
Lecture: Informed Search

Artificial Intelligence

Farmer, Goat, Wolf and Cabbage
There is a farmer who wishes to cross a river but he is not alone. He also has a goat, a wolf, and a
cabbage along with him. There is only one boat available which can support the farmer and either of the
goat, wolf or the cabbage. So at a time, the boat can have only two objects (farmer and one other).

But the problem is, if the goat and wolf are left alone (either in the boat or onshore), the wolf will eat the
goat. Similarly, if the Goat and cabbage are left alone, then goat will eat the cabbage. The farmer wants
to cross the river with all three of his belongings: goat, wolf, and cabbage.

What strategy he should use to do so?

Search Strategies

• Search Strategies are classified into

•uninformed search (or) Blind search
• informed search (or) Heuristic search

Uninformed Vs Informed

• Uninformed search methods that systematically

explore the state space and find the goal. They are

inefficient in most cases.

• Informed search methods use problem specific

knowledge, and may be more efficient. At the heart of

such algorithms there is the concept of a heuristic

function.

Heuristics

• Heuristic means “rule of thumb”.

• To quote J. Pearl, “Heuristics are criteria, methods or principles for

deciding which among several alternative courses of action

promises to be the most effective in order to achieve some goal”.

• In heuristic search or informed search, heuristics are used to identify

the most promising search path.

• Informed (or heuristic) search uses problem-specific heuristics

to improve efficiency

• Best-first
• A*
• RBFS
• SMA*
• Techniques for generating heuristics

Example of Heuristic Function

• A heuristic function at a node n is an estimate of the optimum cost

from the current node to a goal. It is denoted by h(n).

 h(n) = estimated cost of the cheapest path from node n to a goal node

• Example 1: We want a path from Kolkata to Guwahati

h(n)

Guwahati

Kolkata

Actual Path

Estimated Distance

Heuristic for Guwahati may be straight-line distance between Kolkata and
Guwahati
h(Kolkata) = euclideanDistance(Kolkata, Guwahati)

Example 2: 8-puzzle: Misplaced Tiles Heuristics
is the number of tiles out of place.

Tiles: 2, 8, 1, 6 and 7 => Not in Correct location

The first picture shows the current state n, and the second picture the goal state.
h(n) = 5

5 tiles are not their correct location

We must make at least 5 moves to move them to their correct location

So, h(n) is the underestimate of actual number of step required to move to
their goal state

Heuristic Example
8-Puzzle: Manhattan Distance (distance tile is out of place)

This heuristic sums the distance that the tiles are out of place. The distance of a

tile is measured by the sum of the differences in the x-positions and the

y-positions.

• For the above example, using the Manhattan distance heuristic,

 h(n) = 1 + 1 + 0 + 0 + 0 + 1 + 1 + 2 = 6

Best-First Search
• Idea: use an evaluation function f(n) for each node

o f(n) provides an estimate for the total cost.
� Expand the node n with smallest f(n).

• Implementation:
Order the nodes in fringe increasing order of cost.

• Special cases:
o greedy best-first search
o A* search

Best-first Search

• Open list of nodes reached but not yet expanded
• Closed list of nodes that have been expanded
• Choose lowest cost node on Open list
• Add it to Closed, add its successors to Open
• Stop when Goal is first removed from Open

Dijkstra: cost, f(N) = g(N) = distance from start
A*: cost, f(N) = g(N) + h(N)

Greedy Search

• Idea: Expand the node with the smallest estimated cost to reach the goal.

• We use a heuristic function

 f(n) = h(n)

 h(n) estimates the distance remaining to a goal.

• Greedy algorithms often perform very well.

• Disadvantage:

o They tend to find good solutions quickly, although not always optimal ones.

o The algorithm is also incomplete, and it may fail to find a solution even if one exists.

 •In general:
–h(n) ≥ 0 for all nodes n
–h(n) = 0 implies that n is a goal node
–h(n) = ∞ implies that n is a dead-end that can never lead to a goal

Romania with straight-line dist.

Greedy best-first search

■ f(n) = estimate of cost from n to goal
■ e.g., f(n) = straight-line distance from n to

Bucharest
■ Greedy best-first search expands the node

that appears to be closest to goal.

Greedy best-first search example

Greedy best-first search example

Greedy best-first search example

Greedy best-first search example

Properties of greedy best-first search

• Complete? No – can get stuck in loops.

• Time? O(bm), but a good heuristic can give dramatic improvement

• Space? O(bm) - keeps all nodes in memory

• Optimal? No

 e.g. Arad🡪Sibiu🡪Rimnicu Virea🡪Pitesti🡪Bucharest is shorter!

A* search
• Idea: avoid expanding paths that are

already expensive

Evaluation function f(n) = g(n) + h(n)

g(n) = cost so far to reach n
h(n) = estimated cost from n to goal
f(n) = estimated total cost of path through n
to goal

A* Search

Start n Goal

g(n) h(n)

f(n)=g(n)+h(n)

f(n) = estimated total cost of path through n to goal

Actual Estimate

A* search example

A* search example

A* search example

A* search example

A* search example

A* search example

Admissible heuristics

• A heuristic h(n) is admissible if for every node n,

h(n) ≤ h*(n), where h*(n) is the true cost to reach the

goal state from n.

• An admissible heuristic never overestimates the cost

to reach the goal, i.e., it is optimistic

Admissible heuristics

E.g., for the 8-puzzle:
• h1(n) = number of misplaced tiles
• h2(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

• h1(S) = ?
• h2(S) = ?

Admissible heuristics

E.g., for the 8-puzzle:
• h1(n) = number of misplaced tiles
• h2(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

• h1(S) = ? 8
• h2(S) = ? 3+1+2+2+2+3+3+2 = 18

Dominance

• If h2(n) ≥ h1(n) for all n (both admissible)
then h2 dominates h1

• h2 is better for search: it is guaranteed to
expand less or equal no. of nodes.

Example: A*

A* must re-open closed nodes

OPEN: (S,70)
CLOSED:

C D GS

A

B

10 10

10

20
20

90

h=
20

h=110

h=
70

h=
70

h=
60

f =
110

A* must re-open closed nodes

OPEN: (A,120), (B,40)
CLOSED: (S,70)

C D GS

A

B

10 10

10

20
20

90

h=
20

h=110

h=
70

h=
70

h=
60

f =
110

A* must re-open closed nodes

OPEN: (A,120), (C,110)
CLOSED: (S,70), (B,40)

C D GS

A

B

10 10

10

20
20

90

h=
20

h=110

h=
70

h=
70

h=
60

f =
110

A* must re-open closed nodes

OPEN: (A,120), (D,110)
CLOSED: (S,70), (B,40), (C,110)

C D GS

A

B

10 10

10

20
20

90

h=
20

h=110

h=
70

h=
70

h=
60

f =
110

A* must re-open closed nodes

OPEN: (A,120), (G,140), (subtree with f=110)
CLOSED: (S,70), (B,40), (C,110), (D,110)

C D GS

A

B

10 10

10

20
20

90

h=
20

h=110

h=
70

h=
70

h=
60

f =
110

A* must re-open closed nodes

OPEN: (A,120), (G,140)
CLOSED: (S,70), (B,40), (C,110), (D,110), …

C D GS

A

B

10 10

10

20
20

90

h=
20

h=110

h=70 h=
70

h=
60

f =
110

Thank You!

Any Questions?

